
Developing MeeGo apps
with Python and QML
by Thomas Perl <m@thp.io>
http://thp.io/2010/meego-python/

http://thp.io/2010/meego-python/

Table of Contents
Introduction...3

Why should I use Python to develop MeeGo apps?......................................3
Links...3

Setting up the environment...3
Getting the build scripts...4
Building PySide and installing into $HOME...4
Setting up environment variables..5
Testing the installations...5

Basic QML tutorial examples..6
Hello World...6

The Python source (HelloMeeGo.py)...6
The QML UI file (HelloMeeGo.qml)..8

Displaying HTML content in a QML WebView...9
The Python source code (WebKitView.py)...9
The QML content (WebKitView.qml)...11
The HTML page (WebKitView.html)...11

Writing a new QML UI for existing apps for MeeGo..13
A QML UI for gPodder...13

The glue layer in Python (gpodder-qml.py)..14
The QML main UI file (gpodder-qml.qml)..18
The QML file for displaying a list of podcasts (PodcastList.qml).............21
The QML file for displaying a list of episodes (EpisodeList.qml).............24

Packaging a Python application for MeeGo..25
Installing the required dependencies...25
Creating the required metadata files...25

The desktop entry: gpodder-qml.desktop...25
The icon for the app menu: gpodder-qml.png..25
The Spectacle YAML file: gpodder-qml.yaml...26
The Python distutils file: setup.py..26

Changes in the gpodder-qml.py script...26
Creating the RPM sources..27
Building the RPM package from source..27
Installing and testing the RPM package...27

Introduction

This tutorial will guide you through how to set up a PySide environment on your
MeeGo Netbook and then show you some basics through examples, and finally
we'll create a QML UI for an existing application (gPodder) that can be used on
MeeGo Netbook and MeeGo Handset.

Why should I use Python to develop MeeGo apps?

• Low barrier to entry: Python is a very easy to learn language, so you can
get quickly up to speed – independent of whether or not you are already
familiar with other languages

• Garbage collection: You don't have to manually manage the memory of
the objects you create – the Python garbage collector takes care of
removing no longer needed objects

• No compiling: Python is an interpreted language, so you can run your
application right after saving the source in an editor. No need to wait for
code to compile. This is especially important on low-powered netbooks.

• Full access to the Qt libraries: PySide bindings allow access to all modules
of Qt. And because it uses the native Qt libraries, library functions run at
native (compiled) speed.

• Shorter code: In my experience, C++ applications using Qt have about 3
times as much lines of code as the equivalent Python applications – using
the same libraries and Qt classes!

• Prototyping: Even if you plan on writing a C++ Qt application, Python and
PySide are a great combination for quickly prototyping your ideas. This
could be useful to prototype a C++ backend of your QML application.
Later on, you just exchange the Python backend with a C++ backend and
can reuse the QML files from the Python app.

• Development on the go: As Python is an interpreted language, the
runtime already contains all the necessary tools to develop applications,
so you don't have to install a compiler, development libraries and header
files just to create apps – it's instant, and some people even develop
Python GUI apps directly on handset devices like the N900.

Links

• PySide Homepage: http://www.pyside.org/
• MeeGo Homepage: http://www.meego.com/
• PySide Wiki: http://developer.qt.nokia.com/wiki/PySide
• Tutorial homepage: http://thp.io/2010/meego-python/

Setting up the environment

First, make sure to have MeeGo Netbook installed – either directly on your
netbook or in a virtual machine. How to do this is out of scope for this
document, so please refer to the MeeGo Wiki.

http://thp.io/2010/meego-python/
http://developer.qt.nokia.com/wiki/PySide
http://www.meego.com/
http://www.pyside.org/

As you probably want to start developing with PySide right now, and given the
agile state of PySide at this moment (lots of bugfixes being integrated before
the 1.0 release), it's a good idea to build PySide from source. This will not be
necessary in the future (when PySide packages are hopefully integrated into
MeeGo), but you might nevertheless use an up-to-date version for
development.

Getting the build scripts

I've created a set of build scripts that will automate the building of PySide from
the Git repositories, including installing required build dependencies, so you
can get up to speed quickly.

1. Click on the red “Applications” icon on MeeGo
2. Search for “Terminal” and start the application
3. Install Git via “sudo zypper install git”
4. Create a “pyside” folder in your $HOME with “mkdir pyside”
5. Change into the “pyside” folder: “cd pyside”
6. Check out the source: “git clone git://gitorious.org/pyside/buildscripts.git”
7. Change into the “buildscripts” folder: “cd buildscripts”
8. Fetch the sources: “git submodule init” and “git submodule update”
9. Fetching the sources will take a while – grab a coffee or a tea :)

After the buildscripts have been downloaded, you can use them to build PySide
for MeeGo Netbook.

Building PySide and installing into $HOME

Now that you have gotten all the sources, you can build PySide for your
netbook and install it into your home directory so that it does not conflict with
any system-wide installations you might have in place. That's a safe way to
install PySide from Git, as you can always just remove it from $HOME or
reinstall it as often as you wish without cluttering up your system directories.

1. Open another Terminal (or use the one you still have open from the
previous step)

2. Go into the PySide buildscripts folder: “cd ~/pyside/buildscripts”
3. Install the build dependencies: “sudo ./dependencies.meego.sh”
4. Before the next step, make sure to close down any other apps you might

have running – building PySide takes a lot of RAM. If you have problems
building PySide, consider adding some RAM or adding a swapfile

5. (started 14;28) Build and install everything using “./build_and_install”
6. This will take about 2.5 hours (on an Atom single-core netbook) – yes,

that's a lot, but the upside of using Python for development on your
MeeGo netbook is that your applications do not have to be compiled, so
instead of a develop-compile-run cycle, your have a develop-run cycle.
This is especially nice on low-powered netbooks and saves you time and
battery power on the go.

Setting up environment variables

Because we installed PySide into your $HOME, you have to set up some
environment variables for that PySide version to become the active one for
Python to use. Luckily, the “environment.sh” script in the PySide buildscripts
takes care of that. You can either use

source ~/pyside/buildscripts/environment.sh

every time you want to do PySide development, or add this command to your
~/.bashrc file, so it gets executed every time you open a shell or terminal
window (that's the recommended way to do it, so you don't forget to source the
“environment.sh” file when trying out the examples).

Testing the installations

Before we can start to write great PySide apps for MeeGo, let's see if
everything was installed correctly. Fire up another terminal window and enter
“python” to start the interactive Python shell. Now, enter “from PySide import
QtGui” to check if the QtGui module was correctly installed. After that, try
“from PySide import QtDeclarative” to check if the QtDeclarative module is
working. We need the QtGui for basic UI classes (non-QML), and QtDeclarative
for loading and displaying QML content.

Basic QML tutorial examples

This section should give you a short overview with code examples on how to do
simple things with PySide and QML. More examples can be found on the
homepage of this tutorial on http://thp.io/2010/meego-python/

Hello World

This example shows you how to create a minimalistic Hello world QML
application with Python. We already subclass QObject here and provide a
simple property ('greeting') that we can then access from QML. Let's dive right
into the source code.

The Python source (HelloMeeGo.py)

For our first hello world program, we want to generate a greeting in Python and
show it in a QML UI. We do this by subclassing QObject, giving our subclass a
property called “greeting” and exposing an instance of that object to the QML
root context, where we can access it from the QML file.

-*- coding: utf-8 -*-

import sys

from PySide.QtCore import *
from PySide.QtGui import *
from PySide.QtDeclarative import *

http://thp.io/2010/meego-python/

We need the “sys” module (a Python standard module) to access the command
line arguments (we need to pass them to the constructor of QApplication). From
PySide, we need QtCore (which contains core objects, like QObject in our
example) and QtGui (which contains Qapplication, which we need for the Qt
main loop). The QML view is provided by the QtDeclarative module – it provides
QDeclarativeView.

class Hello(QObject):
 def get_greeting(self):
 return u'Hello, Meego!'

 greeting = Property(unicode, get_greeting)

This is the definition of our “Hello” class – we provide a getter method for the
greeting, and return a unicode string “Hello, MeeGo!” in it – if you want, you
can also customize this greeting, i.e. add the time and date using the
“datetime” Python module. In order for QML to be able to access this property,
we have to declare it as such by using “Property” (which is in QtCore). The first
parameter of Property is the type (unicode means unicode string) and the
second one is the getter method – if you want the property to be modifyable,
you need to add a setter method, and if you want it to be dynamically updated,
you also need a notifyable property.

app = QApplication(sys.argv)

hello = Hello()

view = QDeclarativeView()

Here we create instances of the classes we need:

• QApplication is needed by every Qt application and handles command-
line arguments, sets up the graphics system and does other
initializations. It also provides the main loop through the “exec_” method.

• Hello is our class defined above. We create an instance of it that we later
pass to QML using context properties.

• QDeclarativeView is the window / view in which we can load QML content
and display it on the screen.

context = view.rootContext()
context.setContextProperty('hello', hello)

For QML to be able to access our “hello” object, we need to expose it as a
context property to the view's root context – this is done using
setContextProperty. As property name we use “hello”, so we can access the
greeting of that object later using “hello.greeting” in QML.

view.setSource(__file__.replace('.py', '.qml'))

Here the QML file is loaded and displayed in the view. As the QML file has the
same name as our Python script (just a different file extension), we can use
__file__.replace('.py', '.qml') to always get the correct file name – this also
allows you to easily rename both files and still have them work together as
expected (for example, if you want to try to create different variants of this
example).

view.show()
app.exec_()

And finally, here our application starts: We always have to call the show()
method on the view, or otherwise it won't be shown on the screen. If you want
to show the window in fullscreen mode, use “showFullScreen” here – try it out!

In order to start the Qt main loop and process events, we have to call
app.exec_(), so the application does not quit. This is very important.

The QML UI file (HelloMeeGo.qml)

The UI definition is placed in “.qml” files – these have JavaScript-like syntax,
and describe the appearance of your application. In our case, we simply want
to have a red rectangle in which we place the greeting in a white font.

import Qt 4.7

In order to use the built-in QML components like “Rectangle” and “Text”, we
need to import the Qt 4.7 module into our QML file. In future versions of Qt
(4.7.1 and newer), this will be called QtQuick 1.0, but for now, it's called Qt 4.7,
and this is what you have to use.

Rectangle {
 color: "red"
 width: 500
 height: 500
 Text {
 anchors.centerIn: parent
 font.pointSize: 32
 color: "white"
 text: hello.greeting
 }
}

The root object is a 400x400 pixel, red rectangle, which contains a child Text
component that is centered into its parent (i.e. the red rectangle). The text is
32pt in size and has a white color. Its text is taken from the “hello” object (our
Python object instance) as the “greeting” property (which we have defined in
the Python source code).

Save these two files and start the example using “python HelloMeeGo.py”. You
should see a window like the one in the screenshot above. Try it out, and
experiment with changing some properties.

Displaying HTML content in a QML WebView

This short tutorial shows you how to combine the powers of Python, QML, HTML
and JavaScript to create good-looking, rich web applications or
netbook/handset applications that can display web content. This application
consists of three files: The Python source, the HTML content and the QML view
(but as most of the interaction takes place in Python and HTML, the QML is
really short). This example has been ported from my other PySide/QML
examples to MeeGo, and the transition was very easy, as PySide code is very
portable across devices.

The Python source code (WebKitView.py)

What we need in the Python world is a way to send data to the HTML view, and
also a way to receive the data – this is done by evaluating JavaScript code
inside the WebView and by listening to “alert()” calls from the web view.
Communication happens by using JSON to encode data structures, as alert()
does not allow to send arbitrary data.

-*- coding: utf-8 -*-

import sys
import time

try:
 import simplejson as json
except ImportError:
 import json

from PySide import QtCore, QtGui, QtDeclarative

We need the standard Python modules “sys” and “time”, and the Python json
module (included in the Python version shipped with MeeGo Netbook 1.1) to
encode and decode JSON data in Python. From PySide, we need our “usual
suspect” modules – QtCore, QtGui and QtDeclarative. These three modules are
always needed when you want to do something with PySide and QML.

def sendData(data):
 global rootObject
 print 'Sending data:', data
 json_str = json.dumps(data).replace('"', '\\"')
 rootObject.evaluateJavaScript('receiveJSON("%s")' % json_str)

In order to send data to the WebView, we need to get a reference to the root
object of our QML (the root object is the web view) and then evaluate some
javascript inside it. The assumption here is that our HTML file has a
“receiveJSON” function declared in its JavaScript code which receives the data
and handles it. See below for what the receiveJSON function does in the HTML
code.

def receiveData(json_str):
 global rootObject

 data = json.loads(json_str)
 print 'Received data:', data

 if len(data) == 2 and data[0] == 'setRotation':
 animation = QtCore.QPropertyAnimation(rootObject, 'rotation', rootObject)
 animation.setDuration(3000)
 animation.setEasingCurve(QtCore.QEasingCurve.InOutElastic)
 animation.setEndValue(data[1])
 animation.start(QtCore.QAbstractAnimation.DeleteWhenStopped)
 else:
 sendData({'Hello': 'from PySide', 'itsNow': int(time.time())})

The receiving of data from HTML is done by the receiveData function – it will be
connected to the “alert” signal of the WebView, which gets sent when “alert()”
is called from somewhere inside the WebView. What this does is decode the
received string from JSON to a Python data structure and then check the
contents of the received data – if it's a two-item list, and the first item is a
string “setRotation”, we interpret the second value as the target rotation value,
and use a QPropertyAnimation on the root object to rotate the QML component
inside the QML view – because all QML components have standard Qt
properties that can be animated! If it's not a request for rotation, we simply
send an arbitrary data structure to the HTML view as a “reply”.

app = QtGui.QApplication(sys.argv)

view = QtDeclarative.QDeclarativeView()
view.setRenderHints(QtGui.QPainter.SmoothPixmapTransform)
view.setSource(__file__.replace('.py', '.qml'))
rootObject = view.rootObject()
rootObject.setProperty('url', __file__.replace('.py', '.html'))
rootObject.alert.connect(receiveData)
view.show()

app.exec_()

This code creates instances of the QApplication and the QDeclarativeView. The
SmoothPixmapTransform render hint makes the rotated web view look
smoother and not so pixellated. We then load the QML file and set the “url”
property of our root object (a WebView) to point to the HTML file in the same
directory. We also need to hook up the “alert” signal of the root object to our
custom callback “receiveData” to handle data sent from the HTML.

As always, we need to show the view (so it gets displayed on the screen) and
finally call “exec_” on the QApplication instance in order to start the Qt main
loop.

The QML content (WebKitView.qml)

This is very, very short and shows just how easy it is to create a WebView in
QML – first, you need to import QtWebKit 1.0, as the WebView component is not
included in the default Qt QML module. Then, we create a WebView component
as our root object, enable javascript for it (otherwise we won't be able to run
any JavaScript inside it – it's disabled by default) and resize it to 400x280. We
do not yet set the “url” property of it to load the HTML, but instead we do that
directly from our Python code (see above) to show you how to modify
properties in QML components directly from Python code.

import QtWebKit 1.0

WebView { settings.javascriptEnabled: true; width: 400; height: 280 }

The HTML page (WebKitView.html)

This is the HTML content that gets rendered in the WebView QML component.
We need to have some JavaScript in its head (which is the most interesting part
here) that is capable of sending and receiving data to and from our Python
code, so we can connect both worlds and send commands and data back and
forth.

<html>
 <head>
 <script type="text/javascript">
 function sendJSON(data) {
 alert(JSON.stringify(data));
 }

The sendJSON function accepts arbitrary JavaScript data structures (e.g. arrays)
and encodes them with JSON and then uses “alert()” to send it to Python.

 function receiveJSON(data) {
 element = document.getElementById('received');
 element.innerHTML += "\n" + data;
 }

The receiveJSON function gets called from the Python code directly and
receives one string (already in JavaScript data format, not encoded in JSON)
and adds it to our HTML document. We could do more sophisticated processing
of the data here if need be.

 function setRotation() {
 element = document.getElementById('rotate');
 angle = parseInt(element.value);
 message = ['setRotation', angle];
 sendJSON(message);
 }

This is a convenience function used by the HTML below to create a “set
rotation” command message to be sent to the Python code. It's a simple two-
element list with “setRotation” as first element and the angle as second

element. The angle is taken from the input element on the web page.

 function sendStuff() {
 sendJSON([42, 'PySide', 1.23, true, {'a':1,'b':2}]);
 }

This is similar to the setRotation function ,and simply sends some arbitrary
data to the Python side (where it gets printed and answered to with a reply
message, which is received using receiveJSON above).

 </script>
 </head>
 <body style="background-color: white;">
 <h2>PySide, QML and WebKit on MeeGo</h2>
 <p>
 Set rotation:
 <input type="text" size="5" id="rotate" value="10"/>
 <button onclick="setRotation();">Click me now!</button>
 </p>
 <p>
 Send arbitrary data structures:
 <button onclick="sendStuff();">No, click me!</button>
 </p>
 <p>Received stuff:</p>
 <pre id="received"></pre>
 </body>
</html>

And finally, here is the HTML content of the web page (the part that gets
displayed on the screen – we have a heading, two paragraphs and some form
elements like a text entry box and buttons, which carry out the requested
actions when clicked. These fields make use of the JavaScript functions defined
above.

Writing a new QML UI for existing apps for MeeGo

This section deals with a real-world application example and how to use our
knowledge gained in the previous section to create a great mobile UX for your
application to be used on MeeGo netbook and handset. As the dependencies
are in MeeGo Core, the same application obviously works on all other MeeGo
devices (IVI, TV, …) as well, but you might have to tailor your QML UIs to be
usable on these devices, as the usage situation is different. Again – you have to
create a special UI, but the technologies to create the UI are the same.

A QML UI for gPodder

gPodder is a podcast client with which you can download video and audio
content from the web to your device to play it on the go and manage
subscriptions to radio shows. The current gPodder UI is written using PyGTK,
which is still available on MeeGo Netbook, but the preferred UI toolkit is Qt with
QML, and MeeGo Handset does not support PyGTK very well. Our goal here is
not to show how to do a complete port of gPodder to Qt/QML, but to show how
to start and how to integrate existing code with QML UIs through the use of
code examples.

The normal gPodder Desktop UI does not use QML yet, and it's more tailored
towards Desktop use and is not very easy to use with touchscreen devices. We
now want to create a touch-friendly podcast and episode list UI. The old UI
looks like this on MeeGo Netbook:

The glue layer in Python (gpodder-qml.py)

This file uses the existing gPodder codebase (which thankfully exports an easy-
to-use API to our data structures via the “gpodder.api” module) and
implements the classes and structures necessary to expose the gPodder data
to our QML UI and also enables us to interact with the data by using a
Controller that is also exposed to the QML UI and can be accessed directly from
QML.

-*- coding: utf-8 -*-

import os
import sys

from PySide import QtCore
from PySide import QtGui
from PySide import QtDeclarative
from PySide import QtOpenGL

from gpodder import api

These statements import the required modules. If you don't want or need
OpenGL-accelerated QML, you can skip the import of the QtOpenGL module.
This example also assumes that you have gPodder already installed system-
wide. It is also advisable to use the legacy gPodder application to subscribe to
some podcasts so that you can see some contents in the QML UI.

class EpisodeWrapper(QtCore.QObject):
 def __init__(self, episode):
 QtCore.QObject.__init__(self)
 self._episode = episode

 def _title(self):
 return self._episode.title

 def _description(self):
 return unicode(self._episode.one_line_description())

 def _downloaded(self):
 return self._episode.was_downloaded(and_exists=True)

 @QtCore.Signal
 def changed(self): pass

 title = QtCore.Property(unicode, _title, notify=changed)
 description = QtCore.Property(unicode, _description, notify=changed)
 downloaded = QtCore.Property(bool, _downloaded, notify=changed)

The “EpisodeWrapper” class is a subclass of QObject (because we need to
access it from QML) and exposes some information about the episode (i.e. its
title and description and whether or not it has already been downloaded) to the
QML UI. It's important here that you make the properties notifyable (by defining
a Signal “changed” and specifying it as notification signal for the properties by
using “notify=changed” when defining the properties), so that the QML UI can
be notified when it has to update its fields (i.e. when the downloaded state of
an episode changes, the QML UI should update itself to reflect that change).

class PodcastWrapper(QtCore.QObject):
 def __init__(self, podcast):
 QtCore.QObject.__init__(self)
 self._podcast = podcast

 def _url(self):
 return self._podcast.url

 def _title(self):

 return self._podcast.title

 def _description(self):
 return unicode(self._podcast._podcast.description)

 def _cover_file(self):
 f = self._podcast._podcast.cover_file
 if os.path.exists(f):
 return f
 else:
 return '/usr/share/gpodder/podcast-0.png'

 def _count(self):
 total, deleted, new, downloaded, unplayed = self._podcast._podcast.get_statistics()
 return downloaded

 @QtCore.Signal
 def changed(self): pass

 url = QtCore.Property(unicode, _url, notify=changed)
 title = QtCore.Property(unicode, _title, notify=changed)
 description = QtCore.Property(unicode, _description, notify=changed)
 cover_file = QtCore.Property(unicode, _cover_file, notify=changed)
 count = QtCore.Property(int, _count, notify=changed)

As we display not only episodes, but also podcasts (a podcast is a collection of
several episodes), we have to wrap the gPodder-internal podcast objects as
well, and do the same thing as for the episode objects. We do the same as for
the EpisodeWrapper, but expose different properties. If one of the properties
were to change, we would call “self.changed.emit()” from the PodcastWrapper
instance to update its representation in the UI.

class PodcastListModel(QtCore.QAbstractListModel):
 COLUMNS = ('podcast',)

 def __init__(self):
 QtCore.QAbstractListModel.__init__(self)
 self._client = api.PodcastClient()
 self._podcasts = [PodcastWrapper(x) for x in self._client.get_podcasts()]
 self.setRoleNames(dict(enumerate(PodcastListModel.COLUMNS)))

 def rowCount(self, parent=QtCore.QModelIndex()):
 return len(self._podcasts)

 def data(self, index, role):
 if index.isValid() and role == PodcastListModel.COLUMNS.index('podcast'):
 return self._podcasts[index.row()]
 return None

QML can display lists of items and automatically provide an easy way to display
lists using the ListView component. In order to display any data, it has to be put
into a list model (which is a collection of rows that need to be displayed). We
create such a list model for podcasts here. You could define multiple columns,
but in order to make use of QObject properties, we only have one column which
is a QObject. The podcast objects are directly loaded from the gPodder API.

The internal representation of the data is a normal Python list
(“self._podcasts”), whereas the QML ListView has some expectations on how to
get the data – namely the rowCount method (which returns the number of rows
in the model) and the data method, which should return the data for a given
row and column (in our case, we only have one column – the “podcasts”
column that contains a PodcastWrapper for every episode).

class EpisodeListModel(QtCore.QAbstractListModel):
 COLUMNS = ('episode',)

 def __init__(self, episodes):
 QtCore.QAbstractListModel.__init__(self)
 self._episodes = [EpisodeWrapper(x) for x in episodes]
 self.setRoleNames(dict(enumerate(EpisodeListModel.COLUMNS)))

 def rowCount(self, parent=QtCore.QModelIndex()):
 return len(self._episodes)

 def data(self, index, role):
 if index.isValid() and role == EpisodeListModel.COLUMNS.index('episode'):
 return self._episodes[index.row()]
 return None

Just as with the PodcastListModel, in order to display a list of episodes, we need
an EpisodeListModel. The problem here is that the list of episodes is not static,
as it depends on which podcast was selected in the UI (this will become clear in
a bit when you see how the UI is structured). Therefore, we don't grab the list
of episodes directly in the constructor, but receive them as a parameter to the
constructor.

We then take all “native” gPodder episode objects, wrap them in our
EpisodeWrapper (to be accessible from QML) and implement rowCount and
data. This is basically the same as for the PodcastListModel, but it shows how
you can have parameters in your model to provide the data.

class Controller(QtCore.QObject):
 @QtCore.Slot(QtCore.QObject)
 def podcastSelected(self, wrapper):
 global view, episodeList
 view.rootObject().setProperty("state", "Episodes")

 episodeList = EpisodeListModel(wrapper._podcast._podcast.get_all_episodes())
 view.rootObject().setEpisodeModel(episodeList)

 print wrapper._podcast._podcast.__dict__

 @QtCore.Slot(QtCore.QObject)
 def episodeSelected(self, wrapper):
 global view
 view.rootObject().setProperty("state", "Podcasts")

The Controller is the “director” of our QML show – it exposes some helpful
functions for our QML UI to use, and knows about the underlying Python
objects, and makes sure that the view receives updated data when something
is to be shown. In order to do so, we again need to subclass it from QObject (all
objects that you want to access from QML have to be QObject subclasses, as
QML does not know about Python objects).

Methods on that objects that need to be accessible (callable) from QML need to
be decorated with the “QtCore.Slot” decorator – the parameters of the
decorator describe the count and data type of the parameters that the
functions expect – in that case, it's a single parameter of type QObject. We
expose two simple functions – podcastSelected and episodeSelected that will
be called from QML when the user clicks on (or touches) an item in one of the
list views.

When a podcast is selected, we set the state of the UI to “Episodes” (which
automatically starts the transition in QML – which we will see later) and we

populate the list of episodes from the podcast, and when an episode is
selected, we simply go back to the podcasts list (for this example, this is
enough – a full-fledged application might want to show a “episode details”
view, play the episode or start the download).

app = QtGui.QApplication(sys.argv)

view = QtDeclarative.QDeclarativeView()
glw = QtOpenGL.QGLWidget()
view.setViewport(glw)
view.setResizeMode(QtDeclarative.QDeclarativeView.SizeRootObjectToView)

This code sets up a new Qt UI application and creates a window that can be
used for displaying QML content (QDeclarativeView). The two lines with “glw”
are optional and enable OpenGL rendering of QML content (which – depending
on your device – might be faster than normal rendering). If your MeeGo device
does not support this, or if the performance is worse, simply comment out
these two lines.

The “setResizeMode” function on QDeclarativeView defines how the resizing of
the window is handled – in our case, we want the root object in our QML to be
automatically resized to fill the window. This is what you usually want if you
don't want to hardcode the QML to a specific size.

controller = Controller()
podcastList = PodcastListModel()
episodeList = EpisodeListModel([])

These three lines create instances of our classes defined above – a Controller
used as access point for QML, the podcast list (already populated with the
user's podcast subscriptions) and the episode list (which is empty until the user
clicks on a podcast).

rc = view.rootContext()

rc.setContextProperty('controller', controller)
rc.setContextProperty('podcastList', podcastList)
rc.setContextProperty('episodeList', episodeList)

The QML root context can have properties that can be accessed by name from
QML code. We have to expose our three objects (the controller, the podcast list
an the episode list) and give them property names so that we can access them
directly from QML.

view.setSource(__file__.replace('.py', '.qml'))

view.show()

app.exec_()

Now that we have everything set up, we simply have to load our QML UI into
the view (by using setSource on the view). The “__file__.replace('.py', '.qml')”
means that the QML file has the same name as our Python script, but with the
extension “.qml” instead of “.py”.

Now all we need to do is create the QML UI code for our little app.

The QML main UI file (gpodder-qml.qml)

Now that we have our backend code (written in Python) set up, we just need to
create a nice QML UI on top of it. The “interface” to the backend is already
defined by the context properties that we have defined – there's no other
“route” to call Python code from QML. In our special case, that is the Controller
object on which we can call methods and the two models, which will be used by
the ListView components to display lists of podcasts and episodes.

In order to demonstrate good modularity of QML apps, we also split out the
podcast list and episode list as separate components, so that the look and feel
(and behaviour) of the lists can be changed without needing to edit the main UI
file (it also makes the main UI file smaller and easier to understand).

import Qt 4.7

This imports all basic QML elements for use into this QML file. In Qt 4.7.1 and
newer, you should use “import QtQuick 1.0” instead, but with Qt 4.7.0 (as is
the case on MeeGo Netbook), you have to use “import Qt 4.7”.

Rectangle {
 id: rectangle1
 width: 400
 height: 400
 opacity: 1
 state: "Podcasts"

Here, we define our outermost “root” object – a simple Rectangle with the id
“rectangle1” that has a width and height of 400 pixels (due to the
setResizeMode call in our Python code, this object will get resized when the
window size changes). The default state of this object is “Podcasts” (see
below), which means that by default, the podcast list will be shown when the
QML UI is first loaded.

 function setEpisodeModel(mod) {
 episodelist.model = mod
 }

This function is used to set a new model on the episode list view. It is a method
of our root object and can therefore be called from Python – see the Controller
class on how this function is used to load a list of episodes into the view.

 PodcastList {
 id: podcastlist
 model: podcastList
 contr: controller
 }

The PodcastList component isn't defined in Qt – it's a component we will define
by ourself as “PodcastList.qml” in the same directory as this QML file. We give
it an ID to be able to reference it from other parts of the file, and set properties
“model” (the data model to use – in our case the list of podcasts) and “contr”
(a custom property that we use to give a reference to the controller to the list
view, so that we can access the controller directly from the list view).

 EpisodeList {
 id: episodelist
 model: episodeList
 contr: controller
 }

This is equivalent to the PodcastList component usage above – the component
will be defined by us later in the file “EpisodeList.qml”, and will be accessible
through the ID “episodelist” in this QML file (i.e. it's already referenced by
setEpisodeModel above).

 states: [
 State {
 name: "Podcasts"

 PropertyChanges {
 target: podcastlist
 opacity: 1
 visible: true
 }

 PropertyChanges {
 target: episodelist
 scale: 0
 opacity: 0
 rotation: 180
 }
 },

Here, we define the “states” in which this QML component (our root object) can
be in – in our case, there are two states: “Podcasts” (show a list of podcasts)
and “Episodes” (show a list of episodes). When the component is in this state,
the podcastlist object will be shown and the episode list will be hidden (by
scaling it to a factor of zero, setting its opacity to zero and rotating it by 180
degrees – for a nice effect that we will define later by the use of transitions).

 State {
 name: "Episodes"

 PropertyChanges {
 target: podcastlist
 z: 0
 rotation: -180
 scale: 0.3
 visible: true
 opacity: 0
 }

 PropertyChanges {
 target: episodelist
 scale: 1
 opacity: 1
 }
 }
]

The other state that our root object can be in is “Episodes”. In this state, we
hide the podcast list (and rotate and scale it and then set its opacity to zero to
hide it) and instead show the episode list. When this state is entered, the target
components will automatically get these properties assigned.

 transitions: [
 Transition {
 PropertyAnimation {
 properties: "scale,opacity,rotation"
 duration: 500
 }
 }
]
}

I mentioned transitions. Just hiding and showing elements is boring. Therefore,
we simply define some transitions on our root object that will be used to
animate its children when the root object state changes – in our case, we want
to animate the “scale”, “opacity” and “rotation” properties, and the animation
should take exactly 500 milliseconds. With this definition, changing the
properties will not have an immediate effect, but the properties will be
“animated” to reach the end value in 500 milliseconds from the time the
property has been set.

Here's how the transition looks like:

This is everything we need for our little QML app – the specific appearance of
each component is then defined in the PodcastList.qml and EpisodeList.qml
files. The transitions and state changes between these objects are taken care
of by the root view and our controller written in Python.

The QML file for displaying a list of podcasts (PodcastList.qml)

What's left to do now is to specify the appearance of the podcast and episode
list. Let's start with the podcast list, as this is th-e one that is shown first:

import Qt 4.7

We again need the default QML components shipped with Qt, so we import
them here.

ListView {
 id: podcastListView

 property variant contr

The component is based on the QML ListView, but has a new property (of type
“variant”, so we can place any arbitrary QObject in there) and has the name of
“contr”. This is used by our QML application to give the Python Controller
object to this listview. We also need to give this component a component-wide
ID, so that we can access the controller using “podcastListView.contr” in other
parts of this file.

 anchors.fill: parent

This component should automatically fill all the available space of the parent
component – in practice, this means that the podcast list will always fill the
whole visible area of our window – even when its size changes.

 delegate: Component {
 Rectangle {
 width: podcastListView.width
 height: 60
 color: ((index % 2 == 0)?"#222":"#111")

A delegate is used as “template” for rendering a single row in the list view.

Delegates get created and destroyed automatically as needed by QML. Our
delegate is a simple Rectangle that has the same width as our view (because
we want the list items to fill the whole width of the list). The background color
of the list is defined by the “color” property of the Rectangle.

The “index” value inside a delegate gives us the (zero-based) row index of the
current row that is to be rendered. We can utilize it to shade alternating rows
with different background colors – when “index % 2 == 0” (the first, third, fifth,
… row), the background color will be “#222” and when it is not (the second,
fourth, sixth, … row), the background color will be “#333”.

 Image {
 id: cover
 source: model.podcast.cover_file
 sourceSize {
 width: height
 height: height
 }
 width: 50
 height: 50
 anchors.left: parent.left
 anchors.top: parent.top
 anchors.leftMargin: (parent.height - width)/2
 anchors.topMargin: (parent.height - height)/2
 }

We want to display the cover art of a podcast – it should be 50x50 pixels in
size, and its filename is taken from “model.podcast.cover_file”. The “model”
property accesses the underlying model (current row), and the “podcast”
accesses the role name of “podcast” from the model – in our case, it is the first
column (column index zero) of the model – a PodcastWrapper instance. The
PodcastWrapper instance for the given row has a “cover_file” property that
points to the file that should be displayed as cover art.

The rest of the definitions (anchors) is used for layouting, and is out of scope
for this tutorial – you can read about this in the QML documentation.

 Text {
 id: title
 elide: Text.ElideRight
 text: model.podcast.title
 color: "white"
 font.bold: true
 anchors.top: parent.top
 anchors.left: cover.right
 anchors.right: count.left
 anchors.bottom: parent.verticalCenter
 anchors.leftMargin: 10
 verticalAlignment: Text.AlignBottom
 }
 Text {
 id: subtitle
 elide: Text.ElideRight
 color: "#aaa"
 text: model.podcast.description || "No description ;)"
 font.pointSize: 10
 anchors.top: title.bottom
 anchors.left: cover.right
 anchors.right: count.left
 anchors.leftMargin: 10
 verticalAlignment: Text.AlignTop
 }

Here we simply show two different lines of text – one being the title of the
podcast, taken from “model.podcast.title”, and the other one the description of
the podcast, taken from “model.podcast.description”. If the PodcastWrapper for

a given line does not give a description, we use the “No description” text as
default description.

 Text {
 id: count
 color: "white"
 font.pointSize: 30
 visible: model.podcast.count > 0
 text: model.podcast.count
 anchors.verticalCenter: parent.verticalCenter
 anchors.right: parent.right
 anchors.rightMargin: 10
 }

This is the amount of podcasts – the “count” property of PodcastWrapper. This
component is only visible when the count of (downloaded) episodes is greater
than zero. You can use as many properties as you want in a single expression,
and can also use properties for different kinds of things – in this case we use it
for both the visibility of the text and the contents of the text itself.

 MouseArea {
 anchors.fill: parent
 onClicked: { contr.podcastSelected(model.podcast) }
 }

Up to now, we only have displaying of data. What we also want is to be able to
click on a row and have some action performed. We can do this via a
MouseArea – it should fill the parent component (otherwise it would not “catch”
any clicks) and when it is clicked, the “podcastSelected” slot of our “contr”
property should be called with “model.podcast” (a PodcastWrapper instance) as
parameter. This is the “magic” in this case, as it will pass the object to the
controller, which in turn will take care of switching the state of the main
application and populating the list of episodes in the view.

 }
 }
}

Always make sure to close the brackets that you open in QML, or you will get a
syntax error :)

The QML file for displaying a list of episodes (EpisodeList.qml)

-

The last part of our little project is the list of episodes. This is similar to the list
of podcasts, so the listing of the code should be enough in this case:

import Qt 4.7

ListView {
 id: episodeListView

 property variant contr

 anchors.fill: parent

 delegate: Component {
 Rectangle {
 width: episodeListView.width
 height: 60
 color: (model.episode.downloaded?("#987"):((index % 2 == 0)?"#eee":"#ccc"))
 Text {
 id: title
 text: model.episode.title
 color: "black"
 font.bold: model.episode.downloaded
 anchors.top: parent.top
 anchors.left: parent.left
 anchors.right: parent.right
 anchors.bottom: parent.verticalCenter
 anchors.leftMargin: 10
 verticalAlignment: Text.AlignBottom
 }
 Text {
 id: subtitle
 color: "#333"
 text: model.episode.description || "No description ;)"
 font.pointSize: 10
 anchors.top: title.bottom
 anchors.left: parent.left
 anchors.right: parent.right
 anchors.leftMargin: 10
 verticalAlignment: Text.AlignTop

 }
 MouseArea {
 anchors.fill: parent
 onClicked: { contr.episodeSelected(model.episode) }
 }
 }
 }
}

We now have a fully-functional QML application written using Python. You can
start the app using “python gpodder-qml.py”. What we need to do now is
package it up for MeeGo to be installable as package.

Packaging a Python application for MeeGo

This section explains how to create installable RPM packages from Python
applications. We will continue to use our gpodder-qml example for this.

Installing the required dependencies

In order to create RPM packages, you need to install the following tools on your
MeeGo Netbook (with “sudo zypper install <packagename>”):

• python-setuptools

• rpmdevtools

• rpm-build

• meego-rpm-config

• spectacle

Creating the required metadata files

You now need to create some more files that are needed for packaging and for
displaying your application in the MeeGo “Applications” page.

The desktop entry: gpodder-qml.desktop

This file describes the icon that will appear in the Applications menu:
[Desktop Entry]
Name=gPodder-QML
Exec=gpodder-qml.py
Icon=gpodder-qml
Terminal=false
Type=Application
Categories=AudioVideo;Audio;Network;FileTransfer;News;

The icon for the app menu: gpodder-qml.png

This file is the icon that will appear in the Applications menu. It has to have the
same name (without the “.png” extension) as the “Icon=” key in gpodder-
qm.desktop. You can download the icon from http://thp.io/2010/meego-python/

http://thp.io/2010/meego-python/

The Spectacle YAML file: gpodder-qml.yaml

MeeGo uses YAML to describe the packaging information. Based on this YAML
file, the RPM “.spec” will be generated. You can find out more about Spectacle
on http://wiki.meego.com/Spectacle

Name: gpodder-qml
Summary: gPodder QML
Version: 0.1
Release: 1
Group: Network
License: BSD
URL: http://thp.io/2010/meego-python/
Sources:
 - "%{name}.tar.gz"
Description: A QML UI for gPodder

Builder: python
BuildArch: noarch
Files:
 - "%{_bindir}/%{name}.py"
 - "%{_datadir}/gpodder-qml/*.qml"
 - "%{_prefix}/lib/python2.6/site-packages/*.egg-info"
 - "%{_datadir}/applications/%{name}.desktop"
 - "%{_datadir}/icons/%{name}.png"

The Python distutils file: setup.py

This file is used by the setup process to copy the required files to the
corresponding locations in the filesystem when installed.

from distutils.core import setup

import glob

APP_NAME = 'gpodder-qml'

SCRIPTS = [APP_NAME+'.py']

DATA_FILES = [
 ('/usr/share/'+APP_NAME, glob.glob('*.qml')),
 ('/usr/share/applications', glob.glob('*.desktop')),
 ('/usr/share/icons', glob.glob('*.png')),
]

setup(name=APP_NAME,
 version='0.1',
 description='A QML UI for gPodder',
 author='Thomas Perl',
 author_email='m@thp.io',
 url='http://thp.io/2010/meego-python/',
 scripts=SCRIPTS,

 data_files=DATA_FILES)

Changes in the gpodder-qml.py script

You need to do some changes to the gpodder-qml.py script so that it is
executable as application. First, use “chmod +x gpodder-qml.py” to make it
executable. After that, open it in an editor and add the text “#!/usr/bin/python”
(without the quotes) as first line – this makes sure that Python is used to
interpret this script when started (by default, the shell is assumed as
interpreter).

http://thp.io/2010/meego-python/
http://wiki.meego.com/Spectacle

Creating the RPM sources

Create a .tar.gz archive of your source folder that contains all the files (the
source folder should be named “gpodder-qml” and should contain all the files
we've created above):

• tar czvf ~/rpmbuild/SOURCES/gpodder-qml.tar.gz /path/to/gpodder-qml/

You can now go ahead and create the directory structure used by rpmbuild:

• mkdir -p ~/rpmbuild/SOURCES

• mkdir -p ~/rpmbuild/SPECS

The “SOURCES” folder will host your YAML file and a source tarball of your
application. The “SPECS” folder will host the generated .spec file. You can now
create the spec file using spectacle's “specify” tool:

• cd ~/rpmbuild/SOURCES

• specify gpodder-qml.yaml

• mv gpodder-qml.spec ../SPECS/

You can ignore the warning about the missing “Makefile” - for our application, a
Makefile is not needed, as the Python build uses setup.py only.

Building the RPM package from source

Now that everything is set up, you can easily create the architecture-
independent (“noarch”) RPM package with rpmbuild like this:

• cd ~/rpmbuild/SPECS

• rpmbuild -ba gpodder-qml.spec

This will generate the package and save it in ~/rpmbuild/RPMS/noarch/. You
should have a file named “gpodder-qml-0.1-1.noarch.rpm”.

Installing and testing the RPM package

In order to be able to test the package, you can now install it using zypper:

• cd ~/rpmbuild/RPMS/noarch

• sudo zypper install gpodder-qml-0.1-1.noarch.rpm

This will install the package, and you should see it in your application menu:

Congratulations, you've successfully created your first MeeGo Python package!

That's it. Thank you for reading this tutorial. I hope to have given you some
insights into developing QML applications for MeeGo in Python. Any feedback to
this article is greatly appreciated! See http://thp.io/2010/meego-python/ for
downloads of the code examples and more information as well as contact
information for feedback.

http://thp.io/2010/meego-python/

	Introduction
	Why should I use Python to develop MeeGo apps?
	Links

	Setting up the environment
	Getting the build scripts
	Building PySide and installing into $HOME
	Setting up environment variables
	Testing the installations

	Basic QML tutorial examples
	Hello World
	The Python source (HelloMeeGo.py)
	The QML UI file (HelloMeeGo.qml)

	Displaying HTML content in a QML WebView
	The Python source code (WebKitView.py)
	The QML content (WebKitView.qml)
	The HTML page (WebKitView.html)

	Writing a new QML UI for existing apps for MeeGo
	A QML UI for gPodder
	The glue layer in Python (gpodder-qml.py)
	The QML main UI file (gpodder-qml.qml)
	The QML file for displaying a list of podcasts (PodcastList.qml)
	The QML file for displaying a list of episodes (EpisodeList.qml)

	Packaging a Python application for MeeGo
	Installing the required dependencies
	Creating the required metadata files
	The desktop entry: gpodder-qml.desktop
	The icon for the app menu: gpodder-qml.png
	The Spectacle YAML file: gpodder-qml.yaml
	The Python distutils file: setup.py

	Changes in the gpodder-qml.py script
	Creating the RPM sources
	Building the RPM package from source
	Installing and testing the RPM package

